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ABSTRACT 

Day-to-day variations in the amount of bird migration are closely 
related to weather conditions when considered from synoptic, univariate 
or multivariate viewpoints. Multivariate techniques are best suited for 
forecasting, but their limitations require evaluation. This paper des­
cribes applicable techniques and suggests approaches to overcoming the 
limitations. 

Categorically- and continuously-scaled measurements of migration 
v01ume can be analyzed and predicted by multiple discriminant and multiple 
regression procedures respectively. Assumptions of linearity, normality 
and homoscedasticity in the regression situation can be checked by 
analysis of residuals. Violations are often found, but can usually be 
overcome by transformations. Violations of the additivity assumption. 
also occur, but they rarely reduce forecasting accuracy significantly. 

Procedures for dealing with non-stationary variables and predictor 
variables that are non-linearly related to migration volume are described. 
Models incorporating alternative but related sets of predictor variables 
are shown to be·able to forecast migration volume with almost equal 
accuracy. Factor analysis can be very useful in reducing the number of 
predictors to a more manageable number, in avoiding overfitting, and in 
identifying causal relationships. 

INTRODUCTION 

The numbers of birds aloft are concentrated in space and time, and 
hence. so is the bird hazard to aircraft (Richardson 1970). In some of 
these especially hazardous situations, it is both practical and desirable 
to modify aircraft operations on an hour-to-hour basis in order to avoid 
concentrations and to reduce the probability of collisions (Gunn and 
Solman 1968) . If such a program is to be imp'lemented, one must be able 
to recognize concentrations of birds in real time, or even better, to 
predict the locations and/or extent of concentration some hours in advar-ce. 

Both migrating and non-migrating birds may be concentrated in either 
space or time. This paper discusses numerical methods for forecasting 
the numbers of migrating birds aloft at various times. However the sarno 
techniques can be applied in developing procedures for forecasting othel' 
phenomena. 

VARIABLES RELATED TO MIGRATION VOLUME 

The amount of migration varies from day to day within a migration 
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season over at least two and sometimes three orders of magnitude (e.g., 
Nisbet and Drury 1968; Haugh 1972; Able 1973). These variations are 
strongly correlated with variations in weather ~onditions. In general, 
birds tend to migrate when the winds are following relative to their 
'preferred' directions of flight (Richardson 1971, 1972a). Thus in 
spring more birds are aloft when the winds are southerly than when they 
are northerly, while in autumn the converse is true. There are many 
interrelationships amongst weather variables, and hence it is not sur­
prising that correlations with the volume of migration have been found 
for virtually all measurable weather variables (for_reviews, see Lack 
1960a; Richardson and Gunn 1971). Because of the strong relationships 
of weather conditions to the volume of bird migration, weather variables 
must be a major component in any forecasting system. 

Various other variables are known or suspected to affect the volume 
of migration, at least on occasion. These include the date within the 
migration season, moon phase, number of days since the last major flight, 
and tidal patterns. 

FORECASTING TECHNIQUES 

Three types of approaches have been used to elucidate the relation­
ships between migration volume and weather: 

(i) The synoptic approach involves relating the volume of migration 
to large-scale features of the weather, such as pressure systems, 
fronts and broad wind patterns. 

(ii) Bivariate anaZysis involves relating volume to local numerically 
measurable variables one at a time. 

(iii) MUZtivariate anaZysis examines the relationships of migration 
volume to many variables considered simultaneously. 

Synoptic and univariate analyses are useful for describing the sit­
uations when birds tend to migrate and for understanding the adaptive 
significance of their migration timing systems. These techniques can be 
used to develop workable guidelines for predicting migration volume a few 
hours in advance (Blokpoel 1973, in prep.). However it is generally 
agreed that ultimately the best way of forecasting will be by applying 
multivariate models. These can be developed from multivariate analysis 
of daily observations of weather and the volume of migration. Multivariate 
procedures have three main advantages: 

. (i) They permit simultaneous consideration of all the potentially 
useful predictor variables and their interrelationships. 

(ii) They provide more or less objective procedures for identifying 
the most reliable forecasting procedure. 

(iii) Multivariate forecasting models are rea~ily applied because they 
require simple substitution of the values of predictor variables 
into one or more equations. Other forecasting procedures depend 
more upon the experience and judgement of the forecaster. 

While there have been many synoptic and bivariate studies of migration 
volume, few multivariate studies have been done. Gruys-Casimir (1965) 
and Lack (1960b 1963a,b) applied simple forms pf multiple regression to 
visual and radar data in Europe. Nisbet and Drury (1968) applied step-
wise multiple regression to radar observations of spring migration over 
eastern Massachusetts, and Able (1973) used multiple correlation and multiple 
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discriminant analysis in a study of autumn migration over the southeastern 
United States. I have applied these and other techniques to radar data 
from Canada and Puerto Rico, and multiple regression is currently being 
applied to radar data from Europe. 

Unfortunately, the hum~rous limitations of multivariate techniques 
are not widely understood or even recognized. Nisbet and Drury (1968) 
and Richardson and Haight (1970j identified several of these limitations. 
However their severity and effects on forecasting accuracy have not been 
evaluated previously. 

The purposes of this paper are to describe multivariate techniques 
which I or others have found to be useful, to evaluate the limitations 
of these techniques, and to suggest approaches for overcoming those 
limitations. The data used to test and develop the procedures were 
derived from surveillance radar studies of migration in Nova Scotia and 
New Brunswick, Canada, and in Puerto Rico (Richardson 1971, 1972a, 1974, 
in prep.). The volume of migration was recorded each day and night on a 
o to 8 ordinal scale (Richardson 1972b). 

MULTIVARIATE TECHNIQUES 

Four standard multivariate techniques can profitably be applied in 
developing forecasting procedures for migration volume. MUltiple pegpes­
sion analysis is the most widely used technique in this field. It is 
applicable when the dependent variable, here migration volume, is 
measured on a continuous scale. MUltiple discriminant analysis is 
applicable when th'e dependent variable is categorical in nature (e.g., 
migration is either 'present' or 'absent', or 'below normal', 'normal' 
or 'above normal'). Factor analysis, which has not been used in any 
previous study of bird migration, can be used to identify the few basic 
environmental factors which are reflected in many measurable but inter­
correlated variables. Canonical correlation is potentially useful as a 
means for considering the relationships of various predictor variables 
to several spatially or temporally. adjacent measurements of migration 
volume; however it has not yet been applied to this problem, and is not 
discussed here. Multivariate techniques have a heuristic capability in 
addition to their roles in developing usable forecasting procedures and 
in testing hypotheses about relationships between predictors and migration 
volume. ~~en many variables are measured for each of many cases, one 
frequently amasses so many data that it becomes impossible to recognize 
previously unsuspected relationships. This is especially true when the 
predictors are intercorrelated. Multivariate procedures aid in identifying 
these relationships, and thereby lead one to new hypotheses than can be 
tested with additional data. 

The theory and implementation of multivariate procedures is discussed 
by Rao (1952), Harman (1967), Morrison (1967), Cooley and Lohnes (1971), 
and Sneath and Sokal (1973). Computer programs are available for each 
procedure (Nie et al. 1970; Cooley and Lohnes 1971; Rohlf et al. 1971; 
Dixon 1973). 

MULTIPLE REGRESSION ANALYSIS 

A multiple regression analysis fits a linear additive equation to 
the available data. This equation may then be used to forecast the 
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dependent variable, here migration volume, if the values of the various 
predictor variables are known or forecastable. The equation is of the 
form: 

# migrants - C + C X + C X + .•. + CkXk - 0 1 1 2 2 

where there are k predictor variables, Xl' X2, ... , Xk. The combination 
of constants chosen by the analysis procedure is the one which maximizes 
forecasting accuracy for the cases of data upon which the analysis was 
based. The reliability of forecasts based on the equation is measured 
by the multiple correlation coefficient, R, or its square, the percentage 
of the day-to-day variance in volume accounted for by observed relationships 
between migration volume and the predictors. The relative contribution 
of each predictor variable in accounting for that variance is also found. 

Multiple correlation, which has been used by Able (1973), is a form 
of analysis similar to multiple regression, with similar assumptions and 
limitations. It is not applicable as a forecasting technique. 

Any multiple regression analysis assumes that the dependent variable 
is linearly and additively related to the predictors. Furthermore, the 
forecasting errors are assumed to be independent and normally distributed 
with constant variance across the range of values of each of the variables 
in the analysis. When these assumptions are inaccurate, the regression 
constants, multiple correlation coefficient, and forecasting capability 
of the equation are all unreliable. Methods for recognizing and over­
coming violations of the assumptions are discussed below. 

In most multivariate analyses there are strong intercorrelations 
amongst many of the predictor variables as well as correlations between 
predictors and the dependent variable. Different predictors are often 
measuring or being affected by the same underlying factor. For example, 
high volumes of northward migration are usually correlated with southerly 
winds, increasing temperature, humidity and cloudiness, and decreasing 
pressure, ceiling and visibility. These weather characteristics tend 
to occur together, all being associated with a high pressure area moving 
away to the east, a low approaching from the west, or both. Statistical 
procedures, multivariate or otherwise, cannot reliably distinguish the 
causal relationships from the 'spurious' (sensu Simon 1954) ones. How­
ever, the existance of intercorrelations amongst the predictors does not 
vitiate the usefulness of multivariate techniques, particularly for 
forecasting, provided that one recognizes that the models describe 
relationships rather than directly indicate causality (cf. Able 1973:1032). 

Another consequence of the correlations amongst predictors is that 
inclusion of a few of them in the regression equation may give forecasts 
that are about as accurate as could be achieved by inclusion of all of 
them. 'Stepwise' regression techniques are used to fin~ the s~allest 
set of predictors that gives a forecasting ability similar to that 
achievable with all of the predictors. The procedure is to add variables 
to the equation one at a time until no other variable would, if included, 
produce a significantly improved forecasting capability (Draper and Smith 
1966). At anyone step, the variable added to the equation is the one 
which makes the greatest improvement in fvrecasting ability. In the 
example presented in Table 1 an equation including all 19 predictors 
accounted for 67.3% of the night-to-night variance densities, while an 
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TABLE 1 

MULTIPLE REGRESSION ANALYSES OF THE VOLUME OF NOCTURNAL NORTHWARD 
MIGRATION OVER EAST-CENTRAL NEW BRUNSWICK IN SPRINGI 

A. Model B. Stepwise C. Alternative 
Including Mode1 2 Stepwise3 

All Predictors Model 

Constant +22.7539 - 8.1457 + 0.5514 

Magnetic Disturbance + 0.2073 ns 
Ceiling + 1.4123 * + 1. 2427 *** Held Out 
Visibility 0.1820 ns 
Precipitation - 1.4848 ns 1. 7323 * 
B. Press. -1000 rnb + 0.0248 ns 
B. Press. trend - 0.2688 ns 
Temperature trend + 0.1633 * + 0.2501 *** Held Out 
Temp. reI. to norm. + 0.0803 ns + 0.2935 *** 
ReI. Humidity + 0.0661 (*) 
ReI. Hum. trend 0.0445 (*) 0.0406 * 
Opacity + 0.0200 ns 
Hrs. since < 10/10 + 0.0050 ns 
SE compo of wind + 0.1194 ns + 0.1749 * Held Out 
SW compo of wind + 0.1929 ns + 0.1720 ** Held Out 

ISE compo of wind I - 0.1546 ns 
SE compo trend - 0.0314 ns + 0.1084 ns 
SW compo trend + 0.0068 ns + 0.1325 * 
Day of year - 0.3700 ns + 0.1688 ns + 0.1330 ns 

(Day of year)2 + 0.0015 ns - 0.0005 ns - 0.0005 ns 

Mult. Correl. Coeff. 0.820 *** 0.790 *** 0.713 *** 
% Variance Explained 67.3 _62.4 50.8 
SE of estimated (#)1.5 3.42 '3.36 3.86 

1 Based on radar observations of migrants moving NW, N, NE, and E 

2 

3 

(predominantly NE) one hour after sunset on 86 nights between 20 April 
and 5 June in-1970-71 (Richardson 1971).' Volume on a 0-8 scale was 
raised to the 1.5th power prior to analysis to satisfy the normality 
and homoscedasticity assumptions. The constant and partial correlation 
to migration volume for each variable are listed. Scaling procedures 
for the predictors are described in the Appendix. Two-sided significance 
levels are given as follows: ns P > .1; (*) -.1 > P > .05; 
* .05 > P >.01; ** .01:::. P >.001; *** P <- • 001 

First date and date squared were considered as predictors. Thereafter 
variables were added to the model one at a time until none of the 
remaining excluded ones would, if included, significantly reduce the 
forecasting errors (P < .1). Once included, variables were retained 
in the model unless their partial correlation dropped below the P = .2 
significance level. --- means not included. 

Stepwise analysis identical to first, except that the four weather 
predictors included in the first analysis were not allDwed to enter 
the model. 
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equation including only 6 predictors accounted for 62.4%. Indeed, 
inclusion of only the 4 weather variables and not the statistically 
insignificant date terms accounted for 62.2% of the variance. Thus 
stepwise analysis allows one to develop a simple, easily applied equation 
which gives forecasts little less accurate than those obtainable by 
considering many other variables. 

Stepwise analysis has the additional advantage of reducing 'over­
fitting'. When there are more than about 15% or 20% as many predictors 
as cases, the regression model is likely to be unreliable. The extreme 
case of overfitting is that in which there are as many predictors as 
cases. Then the model will account for all of the variance in the data 
from which it was developed, but may be much less successful when applied 
to another set of data. In less severe cases, the multiple correlation 
coefficient and percentage of variance explained are overestimated, and 
the weights of the predictors are less reliable than their standard 
errors would suggest (Lane 1971). Stepwise analysis helps to keep the 
number of included predictors to a minimum, but does not totally eliminate 
overfitting. For example, I randomly divided the 86 nights considered 
in Table 1 into three groups of 29, 29 and 28 cases, and performed the 
stepwise analysis on each group, treating the date terms in the same 
way as the other 17 predictors. The percentages of variance 'explained' 
were 70.8, 72.3 and 83.4%, as opposed to 62.2% when all 86 cases were 
assessed together. The apparent increase in forecasting capability is 
artifactual, and would have been even more unrealistic if all 19 variables 
had been included in the model. Factor analysis, discussed below, 
provides another way of avoiding overfitting. 

When interpreting the results of stepwise analyses, it is important 
to realize that correlated predictors can substitute for one another in 
the model (e.g., Table lC). When one member of a correlated pair of 
variables enters the model, the partial correlation of the other to 
migration volume drops. The degree to which inclusion of one variable 
affects the partial correlation for another is proportional to the strength 
of correlation between the two predictors (i.e., the extent to which 
they are measuring the same underlying environmental factor). For 
example, the density of northward migration over New Brunswick in spring 
is correlated with ceiling, visibility) opacity and precipitation, which 
are strongly intercorrelated. Once one of these, ceiling, has entered 
the regression model, the residual importance of the others in accounting 
for variability in migration volume becomes insignificant (Table 2). 
When ceiling is not allowed to enter the model, precipitation and perhaps 
humidity trend substitute (Table lC). The effects of these variables on 
volume cannot be separated, and one certainly cannot conclude that only 
ceiling is important to the birds. One might instead conclude on the 
basis of the information in T~bles 1 and 2, that after factors such as 
wind have been considered, migration is denser in fair weather than in 
cloudy or stormy weather. Interpretational difficulties of this sort 
can be reduced by using factor analysis to identify the underlying 
environmental factors, and are in any event of little importance in 
arriving at an operationally useful forecasting ability. 
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TABLE 2 

STEP1HSE REGRESSION ANALYSIS OF THE VOLUME OF NOCTURNAL NORTHWARD 
MIGRATION OVER EAST-CENTRAL NEW BRUNSWICK IN SPRINGI 

Variable 

Direction 
.of 

Correl. 1 

Step 

2 3 4 5 

VARIABLES INCLUDED 
Date and (date)2 
Temperature trend 
Ceiling 

+,­
+ 
+ 
+ 
+ 

ns ns 
*** 

ns ns 
*** *** 
*** *** 

ns 
*** 
*** 

SW compo of wind 
SE compo of wind 

** ** 

* 

VARIABLES EXCLUDED 
Magnetic disturbance 
Ceiling 

o 
+ 
+ 

ns 
*** 
*** 
*** 

ns 
*** 

** 
** 

ns ns ns 

1 

ViSibility 
Precipitation 
B. Press. -1000 mb 
B. Press. trend 
Temperature trend 
Temp. reI. to norm. 
ReI. Humidity 
ReI. Hum. trend 
Opacity 
Hrs. since < 10/10 
SE compo of wind 
SW compo of wind 

ISE compo of wind I 
SE compo trend 
sw compo trend 

+ 

+ 
+ 

+ 
+ 
o 
+ 
+ 

(*) 
* 

*** 
*** 
*** 
*** 
*** 

** 
** 

*** 
ns 

(*) 
*** 

(*) 
ns 

* 
(*) 
ns 
* 

** 
(*) 

* 
ns 
ns 
ns 

ns 
. ns 
ns 

(*) 

* 
ns 
ns 
ns 
ns 
* 

** 
ns 
ns 
* 

ns 
ns 
ns 
ns 

ns 
ns 
ns 
ns 
ns 
* 

* 
ns 
ns 

ns 
ns 
ns 
ns 

ns 
ns 
ns 
ns 
ns 

ns 
ns 
ns 

Each column presents the partial correlations of the predictors to 
the 1.5th power. of migration volume at one step of the analysis 
summarized in Table lB. The upper section shows the variables 
included in the model; the lower section shows those not included. 
The significance levels, coded as in Table 1, refer to the partial 
correlations given that only those variables listed in the upper 
section are included in the model. 
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MULTIPLE DISCRIMINANT ANALYSIS 

Multiple discriminant analysis finds constants for linear additive 
functions of the predictors which best discriminate between the various 
categories of the dependent variable, here migration volume. The func­
tions are of the form: 

Discriminant Score = ClXl + C2X2 + .•. + CkXk 

The set of constants chosen for the first function is the one which gives 
scores having the largest. possible ratio of'between categories variance 
to within categories variance. When more than two categories are present, 
additional functions uncorrelated with the first can be computed; each 
may give additional information about the relationships of the predictors 
to migration volume. As in the case of regression analysis, a measure 
of the overall forecasting success can be computed (the canonical cor­
relation coefficient), and the relative importance of the various 
predictors in leading to an accurate forecast is assessed. 

One can use the discriminant function(s) to forecast the probability 
that a given combination of weather conditions will lead to a specific 
category of migration density, and to compute the most probable density 
category with a given set of environmental conditions. Formally, these 
forecasting operations are performed using the classification procedures 
described by Cooley and Lohnes (1971). In practice, it is usually 
unnecessary to use the fully numerical approach. One can compute the 
discriminant score(s) with a given set of predictors, and then forecast 
the density category as the one which has mean discriminant scores most 
similar to the score(s) computed for the occasion in question. 

In order to assess the forecasting capability of a given discriminant 
model, one can use it to ciassify the cases from which the model was 
derived. One can then compare the 'predicted' catego!y for each case with 
what was actually observed. This is routinely done using formal numerical 
classification techniques ~y the widely available BMD07M program (Dixon 
1973), or by the Cooley and ~ohnes (1971) CLASIF program. It is prefer­
able to use the 'prior probabilities = n./n' option. Considering the 
model for nocturnal SW movement over Novi Scotia in autumn (Table 3), 
the proportions of the 229 evenings classified accurately, inaccurately 
by one category (e.g., low density when really none), and inaccurately 
by two categories ('none' when 'high', or vice versa), were 67.2%, 28.8% 
and 3.9% respectively. The model for NE reverse movement had a lower 
canonical coefficient (0.575 vs.0.7l4) and a correspondingly lower fore­
casting accuracy: 66.4%, 18.6%, and 15.0% respectively. The canonical 
coefficient for SE shorebird movement was intermediate (0.653), and so 
was the forecasting accuracy: 62.9%, 32.8%, and 4.3%. In v~ew of the 
large sample sizes (at least for SW and NE movement) and the diversity 
of years and dates over which the data were collected, these success vs. 
failure rates are probably quite reliable as indicators of the error 
rates that would occur if the models were applied to new cases. 

Discriminant analysis assumes linear additive relationships of the 
predictors to the discriminant scores, and it assumes that the variances 
and covariances amongst the predictors are similar for each category of 
density. These assumptions are discussed below. 

316 



TABLE 3 

MULTIPLE DISCRIMINANT ANALYSES OF THE VOLUME OF NOCTURNAL MIGRATION 
OVER NOVA SCOTIA IN AUTUMN, BASED ON 

STEPWISE ANALYSES OF 18 PREDJCTORSI 

Dates Considered 

No. Nights of Data 
Canon. Correl. Coeff. 

Magnetic disturbance 
Ceiling 
Visibility 
Precipitation 
B. Press. -1000 mb 
B. Press. trend 
Temperature trend 
Temp. reI. to norm. 
ReI. Humidity 
ReI. Hum. trend 
Opacity 
Hrs. since < 10/10 
SE compo of wind 
SW compo of wind 2 

ISide compo of windt 
SE compo trend 
SW compo trend 
Day of year3 

S, SW and W 
Movement 

31 July -
20 Nov. 

229 
0.714*** 

+ ns 

+ *** 
+ * 

* 

- (*) 

*** 
- (*) 

'/I' 

ESE - SSE 
Shorebird 
Movement 

31 July -
10 Oct. 

116 
0.653*** 

** 

*** 
+ *** 

*** 

** 

N, NE and E 
Reverse 
Movement 

31 July -
20 Nov. 

226 
0.575*** 

* 

+ ** 
+ *** 
+ *** 

1 
Based on radar observations of migrants over central and western Nova 
Scotia one hour after sunset in the autumns of 1965 and 1969-71 
(Richardson 1972a). Densities were originally measured on a 0-8 scale 
but were converted for these analyses to 'none',' 'low relative to 
normal', or 'high relative to normal' because of year-to-year and week­
to-week non-stationarities and because of bimodality. The second 
discriminant function in each of the three analyses gave an insignif­
icantly (P > .1) improved forecasting capability, and is not presented 
here. The direction of the relationship between density and each 
predictor included in the models is given, as is the significance of 
each variable in achieving accurate forecasts (i.e" the significance 
of the correlation between the variable and the discriminant score). 
The directions of the relationships as listed here are opposite to the 
signs on the variable weights, not presented, since the mean discriminant 
score for above-normal density was in each of the analyses less than 
that for below-normal density. Significance levels are coded as in 
Table 1; scaling procedures for the predictors are given in the 
Appendix. 

. .. continued 
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2 Side component is SW for shorebirds and SE for the others. 

3 Date squared not needed as a predictor since density category relative 
to normal on the date in question was the dependent variable. 

Stepwise multiple discriminant analysis (Dixon 1973) has tne same 
advantages over standard discriminant analysis as does stepwise regression 
over standard regression. However one must again bear in mind the fact 
that anyone included variable may reflect the relationships of a variety 
of correlated predictors to migration density. 

In interpreting the weightings of each predictor variable in a 
discriminant model, one must consider the order of the mean discriminant 
scores for each category of den~ity (cf. Able 1973). When the mean 
score for high density is lower than that for low density. as it was in 
each of the analyses in Table 3, then a negative weighting on a predictor 
implies a positive relationship between density and that predictor. while 
a positive weighting implies a negative relationship. -Conversely, when 
the mean score for high density is greater than that for low density, 
then the opposite is true. 

Table 3 shows that each of three main types of movement over Nova 
Scotia in autumn tended to be most dense with fair weather. as represented 
in the models by some combination of good visibility, high pressure, and 
little precipitation. However the density of N, NE, and E (predominantly 
NE) reverse movement was positively related to cloud as well as negatively 
related to precipitation. This is understandable because reverse move­
ment was densest in the warm sectors of low pressure areas. Each type 
of movement was very strongly related to wind direction. with the densest 
movements tending to occur with following winds. Table 3 and other 
evidence (Richardson 1972a, in prep.) shows that SW movement tended to 
be densest with N, NE & E winds in the central, eastern and southern 
portions of high pressure areas. SE shorebird movement tended to be 
dense with SW-NW winds im~ediately behind cold fronts, where the pressure 
is low or moderate, as well as in the northern and eastern sides of high 
pressure areas. 

FACTOR ANALYSIS 

Factor analysis has two characteristics which make it useful in 
elucidating density-weather relationships: 

(i) It reduces the number of predictors which are to be considered 
by regression or discriminant analysis. This eases interpretation 
and eliminates overfittin~ 

(ii) It permits one to identify underlying factors in the environment, 
each of which may be reflected in many of the original predictors. 
Standard factor analysis techniques result in uncorrelatcd factors. 

Thus one can avoid the difficulties in interpreting relationships of 
density to correlated predictors by using the uncorrelnted factors ident­
ified by factor analysis as the predictol-S in a regression or discriminant 
analysis. At the same time one avoids overfitting when sample sizes are 
marginal. 
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Factor analysis usually consists of two steps: extraction of 
'principal factors' or 'principal components'. followed by rotation of 
those factors within the dimensions of the original variables. Each 
principal factor extracted from the original variables is a linear 
additive function of those variables with different weights on each: 

Factor Score = C1Xl + C2X2 + ••• + CkXk 

The constants are chosen in order to maximize the variance in factor 
scores over the cases being examined, within the constraint that the 
factors must be uncorrelated (orthogonal). When the original variables 
are strongly intercorrelated, a small number of factors can account for 
most of the variance amongst the original variables. Once the principal 
factors have been found~ orthogonal rotation is used in order to concen­
trate the weighting on a few of the original variables, with little 
weighting on the others. The correlations of the original 
variables with the factor scores reveal the characteristic of the 
environment that is being measured by each factor. 

Table 4 shows three main factors extracted from the 17 original 
predictors (excluding date) used in analyses of northward and north­
eastward spring migration over New Brunswick (Table 1). The first 
factor is clearly a measure of fair vs. cloudy or stormy conditions, 
with strong weighting upon ceiling, visibility, precipitation, humidity, 
and opacity. Factor two discriminates between synoptic weather situat­
ions involving southerly or southwesterly winds, falling pressure, and 
high and rising temperature, and those involving northerly or north­
easterly winds, rising pressure and low and falling temperature. It 
measures the polarity and strength of the east-west pressure gradient. 
Factor three discriminates cases with southeasterly side winds from those 
with northwesterly side winds. I evaluated each of these factors each 
evening and reran the regression analysis using these three factors as 
predictors (Table SA). High volumes of migration were very strongly 
(P < < .001) correlated with fair weather (Factor 1) and with synoptic 
conditions having southerly winds (Factor 2), but only marginally related 
to conditions with southeasterly winds (cf. Nisbet and Drury 1968, who 
found stronger relationships to SE than to SW winds for a similar pop­
ulation of birds). The factors are uncorrelated; hence causality can· 
be inferred. The standard error of the estimate based on factors is 
little larger than that based on the original predictors (3.57 vs~3.36; 
F = 1.129; P > .1). Thus the advantages of a factor approach are not 
offset by any significant loss of precision. 

ASSUMPTIONS IN MULTIVARIATE ANALYSIS 

Each of the techniques discussed above makes assumptions about the 
nature of the data and the form of the interrelationships amongst vari­
ables. Violations of these assumptions can lead to unreliable results. 
None of the previous multivariate studies has included any serious 
attempt to assess the accuracy of the assumptions. 

ADDITIVITY 

One assumes additive relationships between the predictors and the 
dependent variable (in regression) or the discriminant score. The effect 
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TABLE 4 

STRUCTURE OF THREE FACTORS EXTRACTED FROM THE 17 ENVIRO~~ENTAL VARIABLES 
USED IN ANALYSES OF MIGRATION OVER NEW BRUNSWICK ON 86 SPRING NIGHTS1 

Correlation of original predictor 

Magnetic Disturbance 
Ceiling 
Visibility 
Precipitation 
B. Press. -1000 mb 
B. Press. trend 
Temperature trend 
Temp. reI. to norm. 
ReI. Humidity 
ReI. Hum. trend 
Opacity 
Hrs. since < 10/10 
SE compo of wind 
SW compo of wind 

ISE compo of wind I 
SE compo trend 
sw compo trend 

Interpretation 

with 

Factor 1 

0.053 
0.874 
0.767 

- 0.638 
0.464 
0.236 
0.368' 
0.274 

- 0.776 
- 0.616 
- 0.749 
- 0.677 
- 0.005 

0.041 
0.224 
0.190 
0.104 

Fair (+) vs. 
Cloudy or 
Stormy (-) 

factor score 

Factor 2 Factor 3 

0.175 - 0.065 
- 0.071 0.001 
- 0.073 - 0.012 
- 0.002 - 0.124 

0.071 0.292 
0.590 - 0.356 

- 0.616 0.058 
- 0.642 - 0.128 

0.306 0.166 
0.190 0.216 

- 0.086 0.021 
0.064 0.057 

- 0.310 0.837 
- 0.774 - 0.145 
- 0.098 - 0.358 
- 0.097 0.695 
- 0.599 0.127 

Conditions Conditions 
with with 

Northerly (+) SE (+) vs. 
vs. Southerly NW C-) Winds 
(-) Winds 

1 Obtained using BMD08M program (Dixon 1973) by (i) principal factoring 
of the original variables, iterating from R2 for communalities, and 
accepting factors with eigenvalues of 1.0 or more, followed by 
(ii) Varimax rotation using Kaiser normalization. 
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TABLE 5 

STEPWISE MULTIPLE REGRESSION ANALYSES OF THE VOLUl>1E OF NORTHWARD MIGRATION OVER EAST-CENTRAL NEW BRUNSWICK 
IN SPRING USING THE FACTORS FROM TABLE 4 AS PREDICTORS 

Fair C+) vs. cloudy or stormy 

Synoptic Conditions with NC+) 
vs. S(-) winds 

Synoptic conditions with SE(+) 
vs. NW(-) winds 

No. of nights 
Mult. Correl. Coeff. 
% Variance Explained 
SE of estimated (1)1.5 

A. Overall 
Model 

+ *** 

*** 

+ (*) 

86 
0.748*** 
56.0 

3.57 

B. Favourable 
Synoptic Weather 

+ *** 

* 

39 
0.769*** 
59.1 

2.94 

C. Intermediate 
Synoptic Weather 

+ *** 

** 

+ (*) 

26 
0.800*** 
64.0 

3.37 

D. Unfavourable 
Synoptic Weather 

*** 

21 
0.659*** 
43.4 
4.19 

1 Each column summarizes one analysis, giving the direction and significance of the partial correlations of 
the factors to the 1.5th power of migration volume. Significance coded as in Table 1; --- means variable 
did not enter the model. 

~~del A includes all 86 cases. Model B includes cases with more or less favourable weather­
(generally southerly winds with a downward pressure trend); model D includes cases with unfavourable 
weather (northerly winds and rising pressure). Model C includes 26 other cases. Note the differential 
weighting of the factors in different synoptic situations. 



of each predictor upon the volume of migration is assumed to be indep­
endent of the values of other predictors. There are logical biological 
reasons why this assumption should not always be true. For example the 
relationship between wind speed and density might well be affected by 
wind direction. Strong winds are quite possibly more favourable than 
light winds when they are following, but they are certainly less favour­
able when the wind is opposing. 

There is no simple and direct way of checking the accuracy of the 
additivity assumption. I have tried to assess the situation by comparing 
the models derived by separate analyses of data from days with synoptic 
weather that was favourable, unfavourable and indifferent. Table 5 
presents one example of such a set of analyses. It would appear that 
different aspects of the weather are indeed most important to migrants 
in different weather conditions. For Nand NE movement over New 
Brunswick on spring nights, given that the wind direction is more or less 
favourable, the strength of the synoptic pattern is apparently much less 
important in determining migration volume than is fair weather. 
Conversely, when the winds are opposing, the strength of the synoptic 
pattern, including wind speed, is of overriding importance. In inter­
mediate conditions both factors seem to be important. Thus in the 
example presented in Table 5 and in other situations that I have examined, 
the response of migrants to various factors is not independent of the 
values of other variables, and hence the additivity assumption is 
violated. 

The existance and nature of violations of the additivity assumption 
are of considerable interest in understanding the adaptive significance 
of birds' migration timing systems. However, these violations usually 
do not have a severe effect on forecasting accuracy. Of the ten categories 
of movement that I have examined using the partitioning technique of 
Table 5, only one partitioned model has given a standard error of estimate 
that approached being significantly less than the standard error from the 
associated overall model; that is model B in Table 5. Even there, a 
comparison of the standard errors for models A and B reveals only a very 
marginal difference (P = 0.1). Thus for forecasting purposes, the slight 
gain in precision obtainable by recognizing and correcting for non­
additive relationships probably does not justify the extra difficulty in 
developing and applying the necessarily more complex procedures. 

INDEPENDENCE 

All techniques involving statistical inference assume that the units 
of observation give independent data. The accuracy of this assumption 
is always in doubt when the units are sequential parts of a time series. 
Virtually all studies of the effects of weather on migration volume have 
used 24-hour periods as the units of observation. While slight positive 
autocorrelations have been observed between densities on successive days 
(Nisbet and Drury 1968: 506; Richardson in prep.), these were the result 
of autocorrelation in the weather. After the effects of weather had 
been accounted for by multivariate models, the forecasting errors wer~ 
not autocorrelated. Since it is the forecasting errors or residuals 
which are assumed to be independent, there is no evidence of significant 
violatjons of this assumption. 
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LINEARITY, NO~~LITY AND HOMOSCEDASTICITY IN REGRESSION 

The regression model assumes that the residuals (errors in fore­
casting) are normally distributed with constant mean and variance across 
the range of each predictor variable and the estimated dependent variable. 
Experience shows that in most situations in which multiple regression is 
appropriate, vlolatiohs of o~e or more of these assumptions will occur. 
Serious violations are readily recognized by eye when the residuals from 
a regression analysis are plotted against each of the variables. These 
plots can be produced on the line printer by the same program which 
performed the regression analysis, as with the BMD02R program (Dixon 
1973). No previous study of migration volume has used this simple but 
powerful technique. Any departure of the distribution from a band of 
constant height across the plot represents a violation. The nature of 
the departure reveals the type of violation and suggests how to overcome 
it (Anscombe and Tukey 1963; Draper and Smith 1966: Ch.3). 

Lineapity 

~~en the mean of the residuals varies over the range of some pred­
ictor variable, a non-linear relationship exists between the dependent 
variable, in our case migration volume, and that predictor. The 
predictor must be rescaled such that it becomes linearly related to 
density. Alternatively, if the relationship is of some simple curvi­
linear form, it may be desirable to add higher-order terms involving 
that variable. For example, migration volume tends to be lower early 
and late in the migration season than at its mid-point. Provided that 
one does not extend the period of study too far, the relationship to 
date may be more or less parabolic. If'so, it would be reasonable to 
include the date and the square of the date as predictor variables. 
~~en stepwise analysis is applied to data of this sort, it is usually 
necessary to make provisions for all terms based on a single parameter 
to enter the model together. 

Wind direction and speed are particularly difficult to deal with 
because of the circular scale of directions and violations of the 
additivity assumption. Conversion of these two variables into components 
along and across the mean flight direction is a widely used and generally 
successful approach (see Appendix). 

Homoscedasticity 

When the dispersion in residuals varies over the range of the 
estimate of the dependent variable,-onehas a violation of the homo­
scedasticity assumption. A transformation of the dependent variable is 
necessary. ~~en the distribution of the dependent variable is skewed to 
the right, there will be more variance in residuals for high estimates 
than for low estimates. This always occurs when migration volume is 
measured on an interval scale. The appropriate transformation will be 
one which compresses the upper end of the distribution more than it 
does the lower end (e.g., logarithm, square root, tenth root, etc.). 
Conversely, when the distribution of the dependent variable is skewed 
to the left, there will be more variance in residuals for low than for 
high estimates, and a scale-expanding transformation will be needed 
(e.g., square, antilogarithm, etc.). The best transformation to use 
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must be found by trial and error, redoing the analysis with alternative 
transformations until the residuals reveal no violations of assumptions. 
Analyses using inappropriate and appropriate scales for the dependent 
variable often suggest very different levels bf significance for some 
of the predictors and produce very different degrees of forecasting 
success. However, provided that one selects the correct general type 
of transformation, its precise nature is rarely important. For example, 
4th root, 10th root and logarithmic transformations usually indicate 
similar significance levels for each predictor and give a similar degree 
of forecasting accuracy (Nisbet and Drury 1968: 530; Richardson in prep.). 

Nisbet and Drury (1968) selected as most appropriate the transform­
ation which produced the maximal multiple correlation coefficient. This 
criterion usually but not always leads one to a model with homoscedastic 
residuals. It is preferable to look directly at the residuals, since 
they are the subjects of the assumption. 

Heteroscedasticity of residuals when plotted against the predictor 
variables often disappears once an appropriate transformation of the 
dependent variable has been found. If not, a scale-compressing or 
scale-expanding transformation should be applied to the predictor 
concerned. This is most likely to be necessary when the values of the 
predictor variable are not normally distributed. 

When transformations are used, statistical inferences are made about 
the transformed variables. One must be cautious in applying the 
conclusions to the untransformed variables. However, one should not 
hesitate to use simple scale-expanding and sca1e~compressing transform­
ations when they are needed to meet the assumptions. There is rarely 
any reason for assuming that birds 'measure' a variable on the original 
rather than the transformed scale. Furthermore, the basic objective is 
to achieve an accurate forecasting procedure; experience shows that 
transformations are usually necessary for this to be achieved. 

Normality 

The residuals are assumed to be normally distributed. Violations 
of this assumption usually occur when the dependent variable is not 
normally distributed. These violations often disappear once the homo­
scedasticity assumption has been met by an appropriate transformation. 

When the dependent variable has a bimodal distribution, no simple 
transformation is likely to satisfy the normality assumption. In this 
situation it is safest to categorize the densities and use discriminant 
rather than regression analysis. I have had to use this approach in 
most of the analyses of densities over Nova Scotia and New Brunswick 
(e.g .• Table 3). Nisbet and Drury (1968) applied regression analysis 
to migration volumes which were bimodally distributed. While they 
recognized the problem, they did not assess the effect which it may 
have had upon the reliability of their results. 

Ordinal scales 

The volume of migration as detected by radar must often be recorded 
on an ordinal rather than an interval scale (see Siegel 1956: 22 for a 
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discussion of scaling procedures). Lack (1960b, 1963a, b) and I (this 
report; Richardson 1974, in prep.) have applied multiple regression to 
ordinal density data. Moon-watching and ceilometer studies suggest tha~ 
ordinal scales are compressed at their upper end. Thus the relationships 
between values on the ordinal scales are presumably similar to those 
between values on interval scales after a square root, log or comparabl~ 
transformation. Hence it is not surprising that ordinally-scaled densities 
require little or no transformation in order for the residuals to meet 
the normality and homoscedasticity assumptions (Table 1; Richardson 1974, 
in prep.). Providing that one checks the assumptions by analysis of 
residuals, multiple regression can be safely applied to ordinally 
scaled data, when the more desirable interval scaling cannot be attained. 

ASSUMPTIONS IN DISCRIMINANT ANALYSIS 

In addition to the additivity assumption, discussed above, discrim­
inant models assume linear relationships between the predictors and the 
discriminant scores. In theory violations of this assumption can be 
recognized by examining the pattern of accurate and inaccurate forecasts 
across the range of each predictor. In practice this is rarely possible 
because it requires large sample sizes. As in the regression setting, 
violations of the linearity assumption can usually be corrected, once 
recognized,by rescaling or by addition of higher otder terms. 

Discriminant analysis of migration volume also assumes that the 
variances and covariances among the predictors are similar for each 
category of density. While serious violations of this assumption can 
be recognized by comparing corresponding elements of the variance­
covariance matrices, appropriate solutions are less obvious. As in the 
regression' setting, predictors which have non-normal distributions are 
likely to result in violations. Hence one useful guideline is to 
transform any non-normal predictor towards normality. Ceiling and 
visibility are variables which have seriously skewed distributions. 
The scales described in the Appendix were chosen in order to avoid this 
problem. 

NON-STATIONARITY 

k~en the observational units are distributed over a time series, 
one problem which may arise is the tendency for variables to vary syst­
ematically over the course of the observations (i.e., to be non-stationary; 
see Otnes and Enochson 1972: 395 for review). When analyzing migration 
volume. weather variables are often significantly correlated with date. 
Temperature is the most obvious case, but others such as pressure, wind 
speed. and cloudiness may also show a systematic trend over the course 
of the season. If one assumes that birds are adapted to respond to 
variations in weather about the normal values, then the appropriate form 
of any non-stationary predictor in the analyses is its departure from 
the normal value on the date in question. Only temperature has been 
recognized as non-stationary and treated in thi$ fashion in previous 
multivariate studies. Normal values over the range of dates in a mig­
ration season may often he obtained by fitting a straight line to the 
observed daily values. 

When the dependent variable is non-stationary, as is mip,ration 
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volume over the course of the season, two approaches are possible. One 
can either convert to values relative to normal prior to the analysis, 
or one can use appropriate date terms as predictors. The former approach 
is used in Table 3; the latter in Tables I and 2. 

EFFECTS OF EXCLUDED VARIABLES 

It is sometimes not possible to include a potentially important 
predictor in a regression analysis because it is non-linearly related 
to the dependent variable, or because its value was recorded for only 
a fraction of the cases. One can perform the analysis of migration 
volume excluding the variable in question and then look for relationships 
between the residuals and that variable. Thereby one determines whether 
consideration of the extra predictor can account for any additional 
variance in the densities beyond what has already been accounted for by 
the other predictors. Nisbet and Drury (1968) applied this technique 
to the moon phase variable, and I have used it in order to assess the 
importance of synoptic weather and days of delay since the last intense 
flight, other factors being equal. 

CONCLUSIONS 

When carefully applied, multivariate techniques offer a powerful 
capability for producing operationally useful forecasts of migration 
volume. However the assumptions of these techniques should'be considered 
more carefully than has been done in the"past. The residuals should be 
examined in ,every regression analysis, and appropriate transformations 
should be made when the assumptions are violated. When they are 
appropriate, more use should be made of less familiar procedures such 
as discriminant and factor analysis. The heuristic capability of multi­
variate procedures should be exploited. 

A sophisticated multivariate analysis usually requires much less 
time and effort than does the collection of the data. Thus an incomplete 
analysis of the data saves little effort and wastes information that has 
already been collected. An additional attraction of multivariate 
techniques is that once learned, they are applicable to a wide variety 
of problems. 
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APPENDIX 

SCALING PROCEDURES FOR PREDICTOR VARIABLES 

The scales for the predictors used in analyses of nocturnal migration 
are descrioed below. These scales usually gave linear relationships to 
migration volume with no heteroscedasticity of forecasting errors across 
the ranges of the predictors. In analyses of diurnal migration, weather 
variables were measured at sunrise rather than sunset. 

Magnetic disturbance.-- K index recorded at 20:00-23:00 AST, on a scale 
of 0 (0-5 gammas) to 9 (>500 gammas). One gamma = 0.00001 gauss. 

CeiZing.-- Based on a 6/10 opacity criterion at sunset 1 = fog; 
2 =< 1200 ft. but no fog; 3 = 1200-3900 ft; 4 = 4000-9900 ft.; 
5 = 10,000-50,000 ft.; 6 = unlimited (i.e. < 6/10 total opacity). 

VisibiZity.-- Square root of horizontal visibility in miles at sunset, 
to a maximum of 4.0 representing 16 or more miles. 

Precipitation.-- 0 = none; 1 = drizzle or showers at sunset without 
widespread precipitation echo on radar display; 2 = same with precip­
itation echo on display, or continuous precipitation without widespread 
echo on display; 3 = continuous precipitation or thunderstorms with 
widespread echo on radar display. 

Barometric pressure.-- In millibars minus 1000 at sunset. In autumn 
measured relative to normal because of non-stationarity over date. 

Pressure trend.-- Pressure at sunset minus that six hours earlier, in mb. 

Temperature trend.-- Sunset value minus sunset value previous evening 
in FO. 

Temperature reZative to normaZ.-- Sunset value in FO above (+) or below 
(-) normal sunset value on that date. 

ReZative humidity.-- Sunset value in per cent. In autumn measured relative 
to normal because of non-stationarity over date. 
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Relative humidity trend.-- Sunset value minus sunset value previous 
evening. 

Opacity.-- Proportion of sky covered by opaque cloud at sunset, in tenths. 

Hours since < lO/lO opaque.-- Number of hours prior to sunset during 
which it has been continuously overcast (0 = not overcast at sunset; 
1 = overcast for one hour preceding sunset, etc.). 

FoZlowing and side components of wind; absolute vaZue of side component.-­
Surface wind direction and speed at sunset in mph resolved trigonometrically 
along axes parallel and perpendicular to mean flight direction for the 
birds being studied.' (Wind direction itself is measured on a circular 
scale and is not linearly related to migration volume). In autumn SW 
component measured relative to normal because of non-stationarity over 
date. 

Wind component trend.-- Component at sunset minus that at sunset on 
previous evening. 

Day of year.-- 1-365 scale. (In order to avoid round-off error, it is 
often helpful to use '(date)2/100' in the analysis and then to adjust 
the constant accordingly). 
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